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Longitudinal oscillations and linear Landau damping in quark-gluon plasma
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On the basis of the semiclassical kinetic Vlasov equation for quark-gluon plasma and the Yang-Mills
equation in covariant gauge, linear Landau damping for electrostatic perturbations such as Langmuir waves is
investigated for the extreme-relativistic and strongly relativistic cases. It has been observed that for the
extreme-relativistic case, wherein the thermal speed of the particles exceeds the phase velocity of the pertur-
bations, the linear Landau damping is absent as has been reported in the literature. However, a departure from
extreme-relativistic case generates an imaginary component of the frequency giving rise to linear Landau
damping effect. The relevant integral for the conductivity tensor has been evaluated and the dispersion relation
for the longitudinal part of the oscillation was obtained. Further, it is also noted that both the real part of the
oscillation frequency and the damping rate are sensitive to the choice of the wave numberk and the Debye
lengthlD associated with quark-gluon plasma.
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I. INTRODUCTION

For the last two decades, theoretical and experimenta
forts are continuing in order to understand the characteris
of quark-gluon plasma~QGP! @1–4#. In QGP, the protons
and neutrons lose their identity, and the nucleus turns in
soup of strongly interacting quarks and gluons with prop
ties different from the normal nuclear matter. The matter
the early Universe was almost certainly QGP until the te
perature fell below a few trillion degrees, a millionth of
second after the big bang. A similar state of matter is a
supposed to exist in the core of the neutron stars. The Q
signals are being probed in the relativistic heavy-ion co
sion ~RHIC! experiments, at Brookhaven National Labor
tory and the Large Hadron Collider~LHC! at CERN@5#. In
these experiments heavy ions such as lead~Pb! or gold ~Au!
are accelerated to very high energies and are made to co
compressing the nuclear matter to extreme energy dens
~greater than 1 GeV/fm3), creating conditions akin to that o
the early Universe. These experiments provide unique op
tunities to probe into a highly excited dense nuclear ma
under controlled laboratory conditions. QGP may be
garded as the quantum chromodynamics~QCD! analog of
the ordinary plasma phase of matter. However, unlike
ordinary plasma, the deconfined quanta of QGP are not
rectly observable because of the fundamental confining p
erties of the QCD vacuum.

It is known that, inspite of the nonperturbative nature
QCD at large distances and at high temperatures, qu
gluon matter becomes similar to an electron-ion plasma,
to the screening of the color field. The colored charg
quarks~and antiquarks! interact with the colored field par
ticle gluons. As the effective coupling constantg(T) de-
creases with increasing temperature, the hadronic matte
larger temperature is expected to be in the state of a we
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interacting gas of quarks and gluons. We therefore expec
be able to describe this deconfined phase by a method sim
to those for an ordinary plasma in electromagnetic fie
@6,7#. The applicability of the plasma description is govern
by the plasma parameterLQCD512pnld

3 , which should be
large compared to unity~hereld is the Debye length andn is
the plasma density!. For quark-gluon matter with very larg
density and zero chemical potential, the plasma descrip
of the deconfined phase appears to be justified as long as
does not come close to the phase transition point@8#.

The knowledge about the spectrum of the color fluctu
tions in the plasma is an important ingredient to our und
standing of its color conduction properties and of the r
evance of color degree of freedom to the hadron format
out of the plasma, with reference to the on-going expe
ments on heavy-ion collisions~LHC and RHIC! and the mat-
ter in the early Universe~microsecond after the big bang!.
The first systematic application of field theoretical tec
niques to calculate the nonabelian plasma properties, an
particular its excitation spectrum, was done in the beginn
of the 1980s@7,9–12#. On the perturbative level, it was no
ticed by Klimov @13# and by Weldon@11,12# that the leading
term in high temperature expansion of the one loop polar
tion tensor was gauge invariant. It was later on recognized
Heinz @8# that this result could be obtained from the classi
color kinetic theory in the linear response function appro
mation. It was shown that, within the one loop approxim
tions, the dispersion relation for gluonic excitations has t
branches@10,11#, in correspondence with the analogous lo
gitudinal and transverse modes of the electromagnetic wa
in ordinary plasmas. It has also been observed that almos
the results obtained from the hard thermal loop approxim
tions ~with certain limits! can also be described in terms
simple semiclassical physics@15,16#. They can indeed be
obtained from a set of equations which generalize to n
abelian plasmas, by using the coupled Maxwell and Vlas
equations which are widely used in ordinary plasmas.

Heinz and Seimens@17# carried out an analysis of th
colored collective modes in a QGP on the basis of ‘‘qua
gluon transport theory’’ near equilibrium. They found th

y,
©2003 The American Physical Society04-1
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two optical modes~longitudinal and transverse! exist starting
for k50 at the plasma frequency, while there is no acou
mode starting atv50. An important conclusion made her
was that linear Landau damping is absent in QGP due to
contribution of massless gluon in the collective modes, si
lar to the situation we have for the case of extrem
relativistic electron plasma@18#. Further, Markov and
Markova@19# developed the theory of nonlinear damping
the basis of hard loop approximation. Linear Landau dam
ing was argued to be absent on the basis of an earlier w
on this subject@17#. However, it was shown that nonlinea
effects play a role in damping the longitudinal waves. It w
also shown that the Landau damping rate so obtaine
gauge invariant@20#.

In this paper we examine the linear Landau damping
electrostatic oscillations~such as Langmuir waves! for
extreme-relativistic and strongly relativistic velocities on t
basis of semiclassical kinetic Vlasov equation for the Q
and the Yang-Mills equation in covariant gauge. As it h
been reported earlier that for an extreme-relativistic cas
which the thermal speed of the particles is fixed at the sp
of light, the linear Landau damping vanishes. Evidently h
the thermal speed exceeds the phase velocity of the pe
bations and thus the two speeds fail to resonate. Howeve
the strongly relativistic case in which the thermal speed
parts from the speed of light, the imaginary part of the p
turbation shows up and thus the Landau damping effect
be observed which is sensitive to the choice of wave num
k and Debye lengthlD .

The plan of the paper is as follows. In Sec. II we deve
the linearized Vlasov kinetic equation for the perturbed d
tributions for the quark and gluon plasma and derive a re
tion for the dielectric response function in terms of the p
larization tensor using the Yang-Mills equation. The integr
of the polarization tensor are evaluated for the electrost
perturbations for both the extreme-relativistic and stron
relativistic cases. In Sec. III the plasma dispersion relatio
developed and discussed for two limiting cases, i.e.,k2!kd

2

andkd
2!k2.

II. LINEARIZED VLASOV THEORY
OF QUARK-GLUON PLASMA

In the ultrarelativistic high temperature collisionle
quark-gluon plasma, the plasma species quarks, antiqu
and gluons are supposed to be in thermal equilibrium
behave like free gas particles obeying Fermi-Dirac and Bo
Einstien statistics, respectively. In order to consider the pr
lem of linear Landau damping for such a phase, we nee
solve the Boltzmann-Vlasov kinetic equations. These eq
tions in relativistic notations can be expressed@2,3,14,17# as

pmDm f q,q̄6
1

2
gpmH Fmn ,

] f q,q̄

]pn
J 50,

pmD̃m f g1
1

2
gpmH F̃mn ,

] f g

]pn
J 50. ~1!
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The force termFmn5(]mAn2]nAm)2 ig@Am ,An# satisfies
Maxwell’s equation in relativistic notation,

DmFmn~x!2z21]n]mAm~x!52Jn~x!,

wherez is a gauge parameter,g is the coupling parameter,A

is the field potential, andDm and D̃m are the covariant de
rivatives, respectively, which act as

Dm5]m2 ig@Am~x!,•#,

D̃m5]m2 ig@Ãm~x!,•#,

where @ ,# denotes the commutator. The generators of
group are denoted byta and Ta for the fundamental and
adjoint representations, respectively. Thus for the fundam
tal representation the color matrix is expressed asAm

5Am
a ta and the field tensor asFmn5Fmn

a ta, and similarly for

the adjoint representation we haveÃm5Am
a Ta and F̃mn

5Fmn
a Ta with

Fmn
a 5]mAn

a2]nAm
a 1 g fabcAm

b An
c .

HereJn is the color current density given by

Jn5gtaE d4ppn@Trta~ f q2 f q̄!1Tr~Taf g!#. ~2!

We also note that Tr(tatb)5dab, Tr(TaTb)5Ncd
ab, and

@ ta,tb#5 i f abctc, where the structure constantsf abc

5 i (Ta)bc. Herem, n are the Minkowski indices which vary
from 0 to 3; anda, b,c, . . . are the color indices which ru
from 1 to N21 of SU(N) gauge group withNf flavors of
quarks.

We now decompose the distribution functionsf s into
regular and random~turbulent! parts,f s5 f s

R1 f s
T , where the

subscripts5q,q̄,g specifies the species~i.e., quarks, anti-
quarks, and gluons, respectively!, such that the average^ & of
the statistical ensembles yields

^ f s&5 f s
R , ^ f s

T&50.

In a similar way the four-vector field potentialAm can also be
decomposed into regular and turbulent parts:

Am5Am
R1Am

T .

For simplicity, the regular part of the fieldAm
R is assumed to

be zero~field-free case! and also the average of the turbule
part ^Am

T&50.
The field tensorFmn can be decomposed into its linea

and nonlinear parts. In the absence of external force~field-
free case!, the regular part can be taken as zero and thus o
the perturbed part of the force will contribute. We therefo
have

Fmn5~Fmn
T !L1~Fmn

T !NL .

Now substituting the values of the distribution functionsf s
in the Vlasov equation for the quarks and antiquarks, we
4-2
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pm]m~ f q,q̄
R

1 f q,q̄
T

!5 igpm@Am
T , f q,q̄

R
#1 igpm@Am

T , f q,q̄
T

#

7
1

2
gpmH ~Fmn

T !L ,
] f q,q̄

R

]pn
J

7
1

2
gpmH ~Fmn

T !L ,
] f q,q̄

T

]pn
J

7
1

2
gpmH ~Fmn

T !NL ,
] f q,q̄

R

]pn
J

7
1

2
gpmH ~Fmn

T !NL ,
] f q,q̄

T

]pn
J ,

and after averaging the above equation, we obtain

pm]m f q,q̄
R

5 igpm^@Am
T , f q,q̄

T
#&7

1

2
gpmK H ~Fmn

T !L ,
] f q,q̄

T

]pn
J L

7
1

2
gpmK H ~Fmn

T !NL ,
] f q,q̄

T

]pn
J L

7
1

2
gpmH ^~Fmn

T !NL&,
] f q,q̄

R

]pn
J .

In a similar way, for the gluon component of the plasma,
have the relationship

pm]m f g
R5 igpm^@Ãm

T , f g
T#&2

1

2
gpmK H ~ F̃mn

T !L ,
] f g

T

]pn
J L

2
1

2
gpmK H ~ F̃mn

T !NL ,
] f g

T

]pn
J L

2
1

2
gpmH ^~ F̃mn

T !NL&,
] f g

R

]pn
J .

These two equations represents the Vlasov equations
volving regular parts of the distribution function. We ca
obtain the corresponding equations for the turbulent parts
subtracting the regular parts from the original distributi
~containing both of the regular and turbulent parts!. Thus for
quarks and antiquarks, we obtain

pm]m f q,q̄
T

5 igpm~@Am
T , f

q,q̄

T #2^@Am
T , f

q,q̄

T #&!

7
1

2
gpmH ~Fmn

T !L ,
] f q,q̄

R

]pn
J 7

1

2
gpmS H ~Fmn

T !L ,
] f q,q̄

T

]pn
J

2K H ~Fmn
T !L ,

] f q,q̄
T

]pn
J L D 7

1

2
gpmS H ~Fmn

T !NL ,
] f q,q̄

R

]pn
J

2H ^~Fmn
T !NL&,

] f q,q̄
R

]pn
J D 7

1

2
gpmS H ~Fmn

T !NL ,
] f q,q̄

T

]pn
J

2K H ~Fmn
T !NL ,

] f q,q̄
T

]pn
J L D , ~3!
06640
e
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and for gluons with turbulent distribution functionf g
T , we get

pm]m f g
T5 igpm~@Ãm

T , f g
T#2^@Ãm

T , f g
T#&!

2
1

2
gpmH ~ F̃mn

T !L ,
] f g

R

]pn
J 2

1

2
gpmS H ~ F̃mn

T !L ,
] f g

T

]pn
J

2K H ~ F̃mn
T !L ,

] f g
T

]pn
J L D 2

1

2
gpmS H ~ F̃mn

T !NL ,
] f g

R

]pn
J

2H ^~ F̃mn
T !NL&,

] f g
R

]pn
J D 2

1

2
gpmS H ~ F̃mn

T !NL ,
] f g

T

]pn
J

2K H ~ F̃mn
T !NL ,

] f g
T

]pn
J L D . ~4!

These Vlasov equations containing the perturbed part of
distribution function will be used to evaluate the dielect
response function.

A. Landau damping and dielectric response function

Now we can express the perturbed distribution function

f s
T5 (

n51

`

f s
T(n) , s5q,q̄,g,

wheren represents the order of the perturbation. Now line
izing the Vlasov equations by collecting the first-order term
and substituting them in Eqs.~3! and ~4!, we obtain

pm]m f q,q̄
T(1)

57
1

2
gpmH ~Fmn

T !L ,
] f q,q̄

R

]pn
J ,

pm]m f g
T(1)52

1

2
gpmH ~ F̃mn

T !L ,
] f g

R

]pn
J .

The unperturbed equilibrium distribution functions fo
quarks~antiquarks! and gluons are

f q,q̄
R

[ f q,q̄
0

5
4Nfu~p0!d~p2!

~2p!3

1

e(pu7m)/T11
,

f g
R[ f g

05
4u~p0!d~p2!

~2p!3

1

e(pu)/T21
, ~5!

which are Fermi-Dirac and Bose-Einstien distribution fun
tions, respectively. The factoru represents the hydrody
namic four-velocity, which in the plasma rest frame
(1,0,0,0). HereT is the average plasma temperature andm is
the chemical potential.

We rewrite the first-order Vlasov equation for quarks~and
antiquarks! as

pm]m f q,q̄
T(1)

57
1

2
gpmH ~Fmn

T !L ,
] f q,q̄

R

]pn
J

57gpm@]mAn
T~x!2]nAm

T~x!#S ] f q,q̄
R

]pn
D

4-3
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and perform its Fourier transformation to obtain the p
turbed distribution function for quarks and antiquarks:

f q,q̄
T(1)

~k,p!57g
xnl~k,p!

pk1 i ep0

] f q,q̄
(0)

]pl
An

T~k!,

wherexnl(k,p)5@(pk)gnl2pnkl#. Similarly, for the case
of gluons we get

f g
T(1)~k,p!52g

xnl~k,p!

pk1 i ep0

] f g
(0)

]pl
Ãn

T~k!.

Now using the above perturbed distribution functio
along with Maxwell’s equation, we calculate the color cu
rent densityJm @which is also decomposed into its regul
and turbulent parts,Jm5Jm

R1Jm
T , such that^Jm&5Jm

R and
^Jm

T&50]. By applying perturbations in the form ofJm
T(x)

5(n51
` Jm

T(n)(x), we obtain

Jm
T(n)~x!5gtaE d4ppm$Tr@ ta~ f q

T(n)2 f q̄
T(n)

!#1Tr~Taf g
T(n)!%.

Taking first-order perturbations in the above equation,
obtain

JT(1)m5gtaE d4ppm
2gxnl~k,p!

pk1 i ep0

3TrF taS ] f q
(0)

]pl
An

T~k!2
] f q̄

(0)

]pl
An

T~k!D
1TaS ] f g

(0)

]pl
Ãn

T~k!D G . ~6!

In the above expression for the perturbed current den
JT(1)m, first-order perturbations of the distribution function
f s

T(1) have been used. In a more standard form, the pertu
current densityJT(1)m can also be expressed as

JT(1)m~k!5Pmn~k!An
T~k!,

where

Pmn~k!5g2E d4p
pm

pk1 i ep0
S pnk•

]

]p
2p•k

]

]pnDNeq

~7!

is the polarization tensor andNeq51/2(f q
(0)1 f q̄

(0))1Ncf g
(0)

is the quark-gluons equilibrium number density. The abo
equation for the current density is the tensor analog of
generalized Ohm’s law. To study the linear Landau damp
in a QGP, we need to calculatePmn.

Now we define the permittivity tensoremn as

emn5dmn2
1

v2
Pmn. ~8!
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The tensor structure of the response functionemn can be
separated into longitudinal and transverse components a

eL512
1

k2
P00 ~9!

and

eT512
1

2v2
Pmm1

1

2k2
P00, ~10!

respectively. The treatment extended here to the problem
Landau damping in QGP is almost classical and the o
place where the quantum mechanics enters are the equ
rium distribution functions for quark and gluon species of t
plasma.

B. Longitudinal component of permittivity tensor

The longitudinal permittivity tensoreL depends on the
conductivity polarization tensorP00. Since the quarks and
antiquarks are fermions, and gluons are bosons, their e
librium distribution functionsf qq

2
and f g are given by

f q q
2

5
1

z71exp~cp/T!11
, f g5

1

z21exp~cp/T!21
,

~11!

wherecp/T is the kinetic energy of the plasma particles f
a very high temperature relativistic case, normalized o
temperature~in eV!. We note that in the high temperatur
limit, rest mass energy is ignored in the relativistic ener
equation. The fugacity numberz5exp(m/T) depends upon
the nature and the chemical potentialm of the particles in
that phase. The conductivity tensorP00 is given by@2,3#

P005
2g2

~2p!3E
„k•v…

] f

]p

k•v2v2 i e
d3p. ~12!

The wave numberk and frequencyv correspond to the
propagation of the oscillations in the QGP andv is the ther-
mal speed of the plasma particles.

In spherical polar coordinates, after performing integ
tion overf, the above equation can be expressed as

P0052
2g2c

zT~2p!2E0

`S Nf exp~cp/T!

@z21exp~cp/T!11#2

1
z2Nf exp~cp/T!

@z exp~cp/T!11#2
1

Nc exp~cp/T!

@z21exp~cp/T!21#2D
3p2S E

0

p kv cos~u!

kv cos~u!2v2 i e
sin~u!du D dp.

Now using the well known Plemelj formula@18#, the in-
tegration overu can be performed as
4-4
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E
0

p kv cos~u!

kv cos~u!2v2 i e
sin~u!du

521
v

kv F lnS 12
v

kv D2 lnS 212
v

kv D G
1 ip

v

kv
QS 12

v

kv D ,

where Q„12(v/kv)… is the Heaviside unit-step function
After straightforward algebraic manipulation, we obtain

E
0

p kv cos~u!

kv cos~u!2v2 i e
sin~u!du

522(
s50

`

@11~21!s#

S kv
v D s11

s11
1 ip

v

kv
QS 12

v

kv D .

Thus the polarization tensor for longitudinal perturbati
P00 becomes

P0052
4g2c

T~2p!2E0

`S Nf exp~cp/T!

@exp~cp/T!11#2
1

Nf exp~cp/T!

@exp~cp/T!11#2

1
Nc exp~cp/T!

@exp~cp/T!21#2D p2F2
1

3 S kv
v D 2

2
1

5 S kv
v D 4

2
1

7 S kv
v D 6

1•••1 ip
v

kv
QS 12

v

kv D Gdp. ~13!

1. Extreme or ultrarelativistic case (i.e.,vÄc)

Here we discuss the extreme relativistic case when
particles thermal speed equals the velocity of light, i.e.v
5c. Thus for the fugacity numberz51, Eq. ~13! becomes

P0052
2g2T2

c2~2p!2E0

`S Nf exp~x!

@exp~x!11#2
1

Nf exp~x!

@exp~x!11#2

1
Nc exp~x!

@exp~x!21#2D x2H F2
1

3 S kc

v D 2

2
1

5 S kc

v D 4

2
1

7 S kc

v D 6

1•••G1 ip
v

kc
QS 12

v

kcD J dx,

wherex5cp/T. Now we note that

E
0

`S Nf exp~x!

@exp~x!11#2
1

Nf exp~x!

@exp~x!11#2
1

Nc exp~x!

@exp~x!21#2D x2dx

5
p2

6
~Nf12Nc!
06640
e

and using the definition for the analog of the plasma f

quency@2,3# 3vp
25(g2T2/c2)@ 1

6 (Nf12Nc)#, the above ex-
pression forP00 becomes

P0053vp
2H F1

3 S kc

v D 2

1
1

5 S kc

v D 4

1
1

7 S kc

v D 6

1•••G
2 ip

v

kc
QS 12

v

kcD J . ~14!

Calculating the longitudinal response functioneL and equat-
ing it to zero, we obtain the linear dispersion relation

12
3vp

2

c2k2 H F1

3 S kc

v D 2

1
1

5 S kc

v D 4

1
1

7 S kc

v D 6

1•••G
2 ip

v

kc
QS 12

v

kcD J 50.

The imaginary component depends on the Heaviside u
step functionQ„12(v/kc)… which leads to the conclusion
that this term survives only if its argument is positive or th
the phase velocityv/k,c ~being the particle thermal speed!.
Therefore, Landau damping vanishes for the extrem
relativistic case. On the other hand the real part yields

3vp
2

c2k2 F1

3 S kc

v D 2

1
1

5 S kc

v D 4

1
1

7 S kc

v D 6

1•••G51.

Neglecting higher-order terms inv, we obtain

v42vp
2v22

3vp
2

5
c2k250.

For the case whenc2k2/vp
2!1, the above expression re

duces to

v25vp
21

6

5
c2k2. ~15!

This expression shows that for QGP near equilibrium,
longitudinal color collective mode of oscillation represents
timelike behavior. Evidently, the thermal speed chosen~i.e.,
v5c) exceeds the phase velocity of the perturbation a
thus the two speeds fail to resonate. The resulting collec
mode therefore does not exhibit damping unlike the elect
plasma waves where for sufficiently large momentak, the
perturbations undergo damping of the order of few timesvp
@21#. This is the consequence of having treated quarks,
gluons as massless. For massive quarks, however, the pl
does show some weak Landau damping@8#.

2. Strongly relativistic case (i.e.,v›c)

The thermodynamical properties of QGP in heavy-i
collisions will involve many nonequillibrium dynamical ef
fects since the short-lived (5210 fm/c) plasma will be sub-
jected to various phenomena, e.g., hadronization. If
4-5
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damping rate is fast compared with the lifetime of the QG
it is hard to probe the plasma state and interpret the sig
tures of the experiments. The excitation of color fluctuatio
will also give rise to energy loss, hadronization of the fa
quarks and quark jets propagating through the plasma@8#.
The space-time development of matter produced in ultrar
tivistic heavy-ion collisions can be described by the hyd
dynamical model, neglecting most of the details and by
suming the initial conditions to be in local therm
equilibrium, which is presumably maintained during the ev
lution. Therefore, a detailed transport theory is in order
describing the rapid time-dependent complex phenom
which could address the problems of finite size plasma
fect, inhomogeneities,N-body phase space, particle res
nance production, freezing out, and other collective effe
prevalent in QGP of RHIC or LHC.

The simple semiclassical treatment that we have con
ered here~based on equilibrium distribution for the fermion
and bosons of the plasma species! may not provide adequat
information regarding QGP signals in the heavy ion collisi
experiments.

In QCD, there exists only one kind of gauge field which
massless under the strict SU(3)c symmetry. However, using
the gauge field with massive gauge field bosons@22#, another
version of QCD has been proposed to describe the str
interactions@23#. In this model, two sets of gluon fields ar
introduced, one set is massive and the other massless.
respondingly three sets of glueballs arise having the s
spin parity but different masses. Although all gluons are i
color octet, some gluons are colorless. If the colorless glu
are not restricted by color confinement, they may exist i
state of free particles. Such massive colorless gluons
exhibit properties similar to the glueballs especially in th
decay modes. They are massive vector particles and
couple with quarks and massless gluons but not with lepto
Thus they may possibly appear in the strong decays or in
p-p̄ collisions but not ine1-e2 collisions. Search for thes
massive gluons and glueballs becomes important both for
theory and the experiment@24,25#. The existence of the sai
massive gluons as free particle may shed light on the un
standing of the nature of color confinement@26#.

Similarly, in analogy with Glashow-Winberg-Salam
model @27# based on SU(2)L3U(1)Y gauge theory, a new
gauge theory, quantum nuclear dynamics~QND! based on
SU(2)N3U(1)z has been proposed. In QND, two kinds
strong interactions are assumed to exist, one produ
Coulomb-like potential for effectively massless gluons a
the other generates Yukawa potential for strongly interac
massive gluons@28#. Here the massive gluons mediate t
strong interaction just as the massive vector bosons med
the weak interactions.. Other issues of masses of quarks,
ral symmetry restoration, and phase structure have been
cussed in detail by Corleton Detar@3#.

In the present case, we treat the quark-gluon soup~of the
early Universe! as a semiclassical system of particles~quark,
antiquarks, and gluons including their massive compone!
analogous to the ordinary plasma of charged species. We
assume the plasma in global equilibrium with negligib
baryon density and without involving phase transitions.
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mentioned before, in such an extreme temperature envi
ment (T.200 MeV), although the rest mass energy is ign
able, the plasma particles of the early Universe~in QGP
state! must possess some finite mass and hence the
speed.

From Eq. ~13! using v5p/m, where m is the average
mass of the QGP particles, and changing the variables
before, by lettingx5cp/T, we obtain

P0052
4g2T2

zc2~2p!2E0

`S Nf exp~x!

@z21exp~x!11#2
1

z2Nf exp~x!

@z exp~x!11#2

1
Nc exp~x!

@z21 exp~x!21#2D x2H F2
1

3 S kTx

mvcD 2

2
1

5 S kTx

mvcD 4

2
1

7 S kTx

mvcD 6

1•••G1 ip
vmc

kTx
QS 12

vmc

kTx D J dx.

~16!

The imaginary part ofP00 is

I 15 ip
vmc

kT E
0

`

QS 12
vmc

Tkx D S Nf exp~x!

@z21exp~x!11#2

1
z2Nf exp~x!

@z exp~x!11#2
1

Nc exp~x!

@z21 exp~x!21#2D xdx.

Keeping in mind the property of the Heaviside unit-st
functionQ„12vmc/Tkx…, we choose the lower limit of the
integration to bea5vmc/kT. Therefore the above integra
yields the following expression:

I 15 ipz
vmc

kT H NfaS 221
z

exp~a!1z
1

1

11z exp~a! D
1NfF lnS 11

1

zD2 ln~11z!G1Nf$ ln@exp~a!1z#

1 ln@z exp~a!11#%1NcS a exp~a!

exp~a!2z

2 ln@exp~a!2z# D J .

The real part ofP00 can be integrated in terms of poly
logarithmic series, poly log@n,z#5(l51

` zl/ln, as

I 2522zS Nf(
l 51

`
~2z! l

l 2
1Nf(

l 51

` S 2
1

zD l

l 2
2Nc(

l 51

`
zl

l 2
D

3S 21 (
s50

in f ty

@11~21!s#

S kT

mvcD s

s11

~s12!!

l s
D .

Now after substituting the values ofI 1andI 2, the conduc-
tivity tensorP00 becomes
4-6
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P0052
4g2T2

c2~2p!2F 1

2
ip

vm

k S Nf

vmc

kT S 221
z

expS vmc

kT D1z

1
1

11z expS vmc

kT D D 1NfF lnS 11
1

zD2 ln~11z!G

1Nf H lnFexpS vmc

kT D1zG1 lnFz expS vmc

kT D11G J 1NcH vmc

kT
expS vmc

kT D
expS vmc

kT D2z

2 lnFexpS vmc

kT D2zGJ D
22S Nf(

l 51

`
~2z! l

l 2
1Nf(

l 51

` S 2
1

zD l

l 2
2Nc(

l 51

`
zl

l 2
D F12

1

4 (
s50

`
@11~21!s#

s11 S kT

vmcD
s ~s12!!

l s GG .
p

n
d
g
lo

an
t

be
m
eu
The mutual dependence of phase transition, chemical
tential m, and temperatureT @critical temperatureTc with
reference to the bag constantB(m,T)] has been discussed i
detail elsewhere@29,30#. Here we assume thermal an
chemical equilibrium for relatively long-lived noninteractin
quark-gluon plasma of the early Universe with global co
neutrality and negligible average baryon density.

The gluons being field particles, such as photons
phonons, have zero chemical potential. We may assume
same for the quark and the antiquark with equal num
density, like for an equal density electron-positron plas
@3#. Thus for this special case of overall color charge n
trality, when the fugacity numberz5exp(m/T) becomes
unity, the expression forP00 reduces to

P0052
4g2T

c~2p!2

1

2
ip

vmc

kT
Nf

vmc

kT

3S 221
2

expS vmc

kT D11D 12Nf lnFexpS vmc

kT D11G

1NcH vmc

kT
expS vmc

kT D
expS vmc

kT D21

2 lnFexpS vmc

kT D21GJ
1

8g2T

c~2p!2 S 2Nf(
l 51

`
~21! l

l 2
2Nc(

l 51

`
~1! l

l 2 D
3S 12

1

4 (
s50

`
@11~21!s#

s11 S kT

vmcD
s ~s12!!

l s D .

The series of the logarithmic function overs depends
upon (kT/mvc). For (kT/mvc).VT

2/Vfc,1, where ther-
mal velocity v th5AT/m and the phase velocityvf5v/k,
we can neglect higher powers~above 4), and obtain
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P0052
4g2T2

c2~2p!2F 1

2
ip

vmc

kT S Nf

vmc

kT S 22

1
2

expS vmc

kT D11D Nf

vmc

kT S 221
2

expS vmc

kT D11D
1NcH vmc

kT
expS vmc

kT D
expS vmc

kT D21

2 lnFexpS vmc

kT D21GJ D
2

1

15
p4S kT

vmcD
2H 1

3
~4Nc17Nf !

2
1

7
p6S kT

vmcD
4

~16Nc131Nf !J G .

Since (vmc/kT).1 and thus exp(vmc/kT)@1, P00 may
be approximated to

P005
4g2T2

c2~2p!2 F 1

45
p4S c2k2

v2 D S T

mc2D 2
1

3
~4Nc17Nf !

1
1

105
p6

c4k4

w4 S T

mc2D 4

~16Nc131Nf !G
2

1

2
ip

4g2T2

c2~2p!2 FNf

v2

c2k2 S mc2

T D 2

expS 2
v

ck

mc2

T D G .

~17!
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III. DISPERSION RELATION

We recall here that the longitudinal component of the
electric permittivity tensor is given by

e l512
P00

c2k2
,

and using the value ofP00 from Eq. ~17!, e l becomes

e l512
A

w2
2

Bc2k2

w4
1 iC

w2

c4k4
expF2

w

ck S c2

v th2
D G ,

~18!

where A5 1
45 p2c2kd

2(T/mc2)2(4Nc17Nf), B5(p4/
105)(c2kd

2)(T/mc2)4(16Nc131Nf), and C5(1/
2p)(c2kd

2)(mc2/T)2Nf , where the Debye wave numberkd

5gT/c2.
Defining v5v r1 iv i and assumingv i!v r , we can

write the dispersion relation as

v r
42Av r

22Bc2k21 i Fv i~4v r
322v rA!

1
C

c4k4
v r

6expS wr

ck

mc2

T D G50.

From the real part of the above expression, we obtain

v r
25

A

2
1

1

2
AA214Bc2k2. ~19!

The second root with negative sign is neglected as it yie
nonphysical values ofv r . The imaginary componentv i or
the Landau damping rate is given by

v i52

c2kd
2

2p S mc2

T D 4 v r
6

c4k4
expS 2

wr

ck S mc2

T D DNf

4v r
322v rF 1

45
p2c2kd

2S T

mc2D 2

~4Nc17Nf !G .

~20!

Let us now consider two special cases, i.e., long w
length whenk,kd and short wave length when the oppos
holds true.
06640
-

s

e

~i! For longer wave lengthsk2!kd
2 , the real componen

becomes

v r
2'A1

Bc2k2

A
.

Using the values ofA andB, we have

S mc2

T D 2 v r
2

c2kd
2

5
p2

45
~4Nc17Nf !1

3

7
p2

k2

kd
2 S 16Nc131Nf

4Nc17Nf
D .

We note here that in the limitk→0, the oscillation frequency
v r behaves like an ordinary Langmuir oscillation.

The imaginary component for the long wave length ca
becomes

v i

v r
52

Nf

8p S mc2

T D 4 v r
4

c4k4
expF2

wr

ck S mc2

T D G
p2

90
~4Nc17Nf !1

3

7
p2

k2

kd
2 S 16Nc131Nf

4Nc17Nf
D .

~ii ! For the short wave lengths case, i.e., whenkd
2!k2, we

have

v r
2'

A

2
1ckABS 11

A2

8Bc2k2D
or

v r
2'

p2

90
c2kd

2S T

mc2D 2

~4Nc17Nf !1
p2

A105
~ck!~ckd!

3S T

mc2D 2

~16Nc131Nf !
1/2

3S 11
1

154

~c2kd
2!

c2k2

~4Nc17Nf !
2

~16Nc131Nf !
D .

The imaginary componentv i , i.e., the Landau damping be
comes
v i

v r
52

Nf

8p S kd
2

k2D b4exp~2b!

p2

A105
S kd

k D ~16Nc131Nf !
1/2F11

1

154S kd
2

k2D ~4Nc17Nf !
2

~16Nc131Nf !
G ,
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whereb5(v r /ck)(mc2/T).
In order to calculate the color current polarization ten

for the electrostatic oscillationsP00 and linear Landau
damping in QGP, we have considered two special case
the plasma particles in the velocity range of strongly rela
istic and extreme-relativistic cases. We observe that for
extreme-relativistic case~i.e., v5c) the Landau damping
disappears since the phase velocityv/k in this case remains
smaller than the thermal speed of the particle (c).

On the other hand, for the strongly relativistic case,
two velocities resonate and thus the QGP exhibits Lan
damping, for both the long- and short-wavelength regio
Further we see that the wavelength of the perturbations
Landau damping rate are sensitive to the choice of Q
parameters of interest. We have also noted that for lon
,

.

lty
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wavelength regimes, in the limit ofk→0, the oscillation
frequency shows a behavior similar to that of the ordina
plasma frequencyvp . On the other hand for the short wave
lengths, there is an additional term that appears in the
part of the frequency~thus also in the Landau damping term!
that depends onkd and its higher orders.
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